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Development of a structured model for batch cultures
of lactic acid bacteria
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Abstract A combined stochastic-deterministic model
able to predict the growth curve of microorganisms,
from inoculation to death, is presented. The proposed
model is based on the assumption that microorganisms
can experience two different physiological states: non-
proliferating and proliferating. The former being the
physiological state of the cells right after their inocula-
tion into the new extracellular environment; the latter
the state of microorganisms after adaptation to the new
medium. To validate the model, a Lactobacillus bulgar-
icus strain was tested in a medium at pH 4.6 at two
different temperatures (42�C and 35�C). Curves repre-
senting the bacterial growth cycle were satisfactorily
fitted by means of the proposed model. Moreover, due
to the mechanistic structure of the proposed model,
valuable quantitative information on the following was
obtained: rate of conversion of non-proliferating cells
into proliferating cells, growth and death rate of pro-
liferating cells, and rate of nutrient consumption.

Keywords Predictive microbiology Æ Modeling Æ Lactic
acid bacteria

Introduction

The growth curve of a typical bacterium in a batch
cultivation consists of four consecutive phases: the lag
phase, during which there is no appreciable change in
cell number; the exponential growth phase, where the
number of living cells increases exponentially; the sta-
tionary phase, during which period the number of

microorganisms does not change appreciably; the death
phase, characterized by an exponential decrease in the
number of living cells. Generally, microbiologists are
interested in minimizing or preventing microbial growth.
Therefore, they have focused their attention on devel-
oping mathematical models able to describe the first two
phases of the entire growth curve, i.e., models able to
predict the microbiological consequence of food storage.
However, because of a number of health benefits
deriving from probiotic bacteria (such as the inhibition
of pathogens, reduction of colon cancer risk, stimulation
of immune function, and reduction of serum cholesterol
levels [10,16,19]), the stationary and death phases of the
growth curve are also of great interest to food micro-
biologists. In fact, the ultimate intent in the probiotic use
of foods is to provide the human gastrointestinal tract
with a viable population of probiotic bacteria. The
number of viable cells in food is of great importance, as
demonstrated by other authors in studies on increasing
numbers of colonization and dose-response, thus defin-
ing the required doses [9,14,15].

A number of models have been developed to predict
bacterial growth in foods [4,13,17]. Many of these
models may be classified as empirical [20,21], describing
sigmoid functions that approximate bacterial growth
curves (cell concentration versus time). While empirical
models are useful for correlating a wide range of batch
growth data and have predictive value, they fail to
provide any real insight into the underlying mechanisms
controlling cell growth. In contrast, mechanistic models,
which are more complex from a mathematical point of
view, give a detailed description of all phenomena in-
volved during cell growth [3,22], providing valuable
quantitative information that can be advantageously
used to control (either promoting or inhibiting) micro-
organism growth.

In the present paper, a mechanistic model describing
the phenomena behind the dynamic changes observed in
all phases of the investigated experimental system is
developed. A combined stochastic-deterministic ap-
proach was used to describe the entire cell growth curve.
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The ability to resolve the growth curve of a typical
bacterial batch cultivation into the three basic phe-
nomena involved—namely, cell adaptation to the new
extracellular environment, cell growth, and cell
death—is the main feature distinguishing the proposed
model from others reported in the literature [5,6].

Materials and methods

Bacterial strains

Yogurt from retail food stores was decimally diluted in sterile saline
and 1 ml of each dilution was transferred into Petri dishes. Mod-
ified (pH 5.4) melted MRS agar (Oxoid, Milan, Italy) (10–15 ml)
was poured over the inoculum and allowed to solidify, after which
the plates were incubated under anaerobic conditions at 37�C for
72 h. Typical colonies were picked up, purified, Gram stained, and
biochemically tested with the API System 50 CH (bioMérieux,
Marcy L’Etoile, France).

Microbiological analysis

Lactobacillus delbruekii subsp. bulgaricus, isolated from yogurt was
tested in MRS broth (Oxoid), at pH 4.6 and at two different tem-
peratures: 35 and 42�C. Working cultures were grown in MRS plus
7& agar and incubated at 37�C for 48 h.

Aliquots of MRS broth (250 ml) were inoculated with the
working cultures (0.5% v/v). Bacterial counts were carried out at
intervals, using the pour plate method on MRS agar plus covering
layer, and incubating the plates at 37�C for 48 h. The cell counts
were performed until colony-forming units (cfu) were detected
(about 180 h at 35�C and about 200 h at 42�C). Every trial was
carried out in triplicate. During experimentation, the pH was
monitored to ensure that no inhibitory levels of acidity were
reached; the pH never dropped below 3.5 during cell growth at the
two temperatures investigated.

Modeling

The proposed model (see Fig. 1) is based on the assumption that
microorganisms can experience only two different physiological
state: non-proliferating and proliferating, the former being the
physiological state of cells right after their inoculation into
the new extracellular environment, and the latter the state of
microorganisms fully adapted to the new medium. While cells are in

the non-proliferating state, they try only to adapt themselves to the
new medium. In this physiological state the proliferation and death
rates of microorganisms are negligible, they can only convert to the
other state: the proliferating state. In contrast to non-proliferating
microorganisms, proliferating cells can proliferate and die. The
above picture is similar to that of Srivastava and Volesky [17], who
assumed that there is a bottleneck-substance that must reach a
certain level to induce the growth of the cells. In fact, there is a
continuous exchange between the above two hypothesized physio-
logical states, which represent the extremes of the whole spectrum of
physiological states experienced by themicroorganisms.However, as
also reported by Srivastava and Volesky [18], the above assumption
is reasonable if one wants to evaluate the growth rate. Two addi-
tional assumptions used to derive the model are: (1) the limiting
nutrient concentration was considered one of the main factors
influencing cell growth rate (see p. 375 in [1]); (2) the amount of
nutrient released by the dead cells, which contributes to the increase
in the limiting nutrient concentration, is neglected (see p. 397 in [1]).

The rate at which non-proliferating microorganisms convert
themselves to the proliferating state depends on their previous
history (i.e., on the state of cells prior to inoculation) as well as on
conditions in the new extracellular environment [5,6]. To describe
the rate of conversion of non-proliferating cells, a stochastic
approach, similar to that proposed in 1998 by Baranyi [2] to
describe the lag phase, was adopted. Thus, the amount of non-
proliferating cells converted into proliferating cells at a given time
was evaluated by integrating the product of Q0 (see Appendix) and
the probability density function (see p. 30 in [11] of non-prolifer-
ating cell conversion. In particular, the Normal probability density
function (see p. 49 in [11]) was used in this paper to predict the
probability that non-proliferating cells convert to proliferating ones
in the time interval included between time t and time t+dt:

R1 tð Þ ¼ Q0 �
1

r �
ffiffiffiffiffiffiffiffiffi

2 � p
p � exp � 1

2
� t � m

r

� �2
� �� �

ð1Þ

where m is the mean of the probability density function (it can be
envisaged as the time at which half of the non-proliferating cells
convert into proliferating cells), and r is the standard deviation of
the probability density function, i.e., a measure of the heteroge-
neous cell situation. In fact, according to Eq. 1, the microorgan-
isms do not behave in the same manner; i.e., some of them are able
to adapt to the new extracellular environment faster than others.
This aspect, which is close to the real physical situation, is generally
neglected in many of the models reported in the literature [17],
which assume that during growth all cells behave in the same
manner.

As reported above, proliferating cells are fully adapted to the
new medium, hence they can proliferate. The proliferation rate of
adapted microorganisms depends on both the cell concentration
and the physicochemical state of the extracellular environment. As

Fig. 1 Schematic represen-
tation of the proposed
microbial growth model
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reported above, the latter depends only on the limiting nutrient
concentration. To describe the proliferation rate of adapted
microorganisms, a first order kinetic was used:

R2 tð Þ ¼ exp F tð Þ � k1½ � � 1f g � k2 � P tð Þ ð2Þ
The term {exp[F(t)–k1]–1}Æk2 is the ‘‘inhibition function’’ [3],

which accounts for the dependence of the proliferation rate on the
limiting nutrient concentration. The parameter k1 is the threshold
value for limiting nutrient concentration. In fact, for values of
limiting nutrient concentration equal to or lower than k1, R2(t) is
equal to zero. The parameter k2 is the kinetic constant of the cell
proliferation phenomenon; for a given value of concentration of
both proliferating cells and nutrient, the higher k2, the higher the
rate of cell proliferation.

As reported in the literature, the rate at which proliferating cells
die follows a first order kinetic [7]:

R3 tð Þ ¼ k3 � exp k4 � F tð Þ½ � � P tð Þ ð3Þ
The term k3Æexp[k4–F(t)] accounts for the dependence of R3(t)

on limiting nutrient concentration. The parameter k4 is the
threshold value for limiting nutrient concentration. In fact, for
limiting nutrient concentration equal to or higher than k4, the value
of R3(t) can be considered negligible. On the contrary, for values of
F(t) lower than k4, R3(t) becomes increasingly large, leading to a
decrease in cell population. The parameter k3 is the kinetic constant
of the cell dying phenomenon: for a given concentration of both
proliferating cells and nutrient, the higher k3, the higher the cell
death rate.

To evaluate the change in the extracellular environment over
time, it was assumed that the rate of nutrient consumption depends
on the proliferating cell concentration through a power law type
expression:

dF tð Þ
dt
¼ �k5 � P tð Þ½ �0;1 ð4Þ

The parameter k5 is the kinetic constant of the phenomenon
describing nutrient consumption: for a given concentration of
proliferating cells, the higher the value of k5, the higher the rate of
substrate consumption.

According to the above description of the evolution of the
microbial population of a batch cultivation during storage, the
concentration of microorganisms is given by the following
expression:

N tð Þ ¼ Q tð Þ þ P tð Þ ð5Þ
To predict the entire growth curve it is necessary to predict the

evolution of both Q(t) and P(t) during storage. According to the
expression reported above, the rates at which both Q(t) and P(t)
change during storage are:

dQ tð Þ
dt
¼ �R1 tð Þ ð6Þ

dP tð Þ
dt
¼ R1 tð Þ þ R2 tð Þ � R3 tð Þ ð7Þ

Equations 4, 6 and 7 form a set of three ordinary differential
equations, whose unknowns are Q(t), P(t) and F(t). The above
system was numerically solved using a fourth-order Runge-Kutta
formula [12] with the following initial conditions: Q(0) = Q0, P(0)

= 0, F(0) = F0. The numerical solution was used to fit the
experimental data, and to predict the time course of microbial
population on storage.

Results and discussion

To validate the proposed model, the growth curve of
L. delbruekii subsp. bulgaricus was experimentally
determined at 42�C and 35�C. Figure 2 shows log[N(t)]
plotted as a function of time. In the same figure the best
fit of the proposed model to the experimental data is also
shown. The values of the model’s parameters obtained
by fitting the experimental data are listed in Table 1. The
criterion used to evaluate the goodness of fit was the
relative percent difference between experimental and
predicted values or mean relative deviation modulus,
defined by the following equation [8]:

�EE% ¼ 100

nexp
�
X

nexp

i¼1

Y i
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pred

�

�

�

�

�

�

Y i
exp

ð8Þ

An E% value less than or equal to 5% indicates a
very good fit, while a value more than 5% but less than
10% indicates a reasonably good fit [8]. The values ob-
tained in the present investigation for E% were 4.76%
and 2.44% for the data obtained at 35�C and 42�C,
respectively. The results obtained prove that the pro-
posed model satisfactorily fits the data, thus corrobo-
rating the validity of the approach and the hypothesis
used to derive it.

Fig. 2 log[N(t)] plotted as a function of time for tests conducted at
35�C (d) and 42�C (h). Solid line best fit of the model to the
experimental data obtained at 35�C, dashed line best fit of the
model to the experimental data obtained at 42�C

Table 1 Values of model parameters obtained by fitting the experimental data. Q0 Initial concentration of non-proliferating cells, m mean
value of the probability density function, r standard deviation of the probability density function, k1–5 constant(s), to be regarded as
fitting parameters

Q0 m r k1 k2 k3 k4 k5
cfu
ml
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cfu=mlð Þ0:1

h i

35�C 2.63·104 18.6 1.55 51.5 2.46·102 1.86·102 53.6 4.71·103
42�C 7.43·104 52.3 2.01 53.3 0.351 0.397 49.2 9.49·103
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As reported in the literature [17], the strength of a
mechanistic model, besides its ability to predict the
experimental data, is to provide valuable information on
all the phenomena involved during the cell growth-cycle.
In the following, the proposed model is used to evaluate
the evolution of the following during the cells’ growth-
cycle: (1) rate of conversion of non-proliferating cells
into proliferating cells, (2) growth and death rate of
proliferating cells, (3) rate of nutrient consumption. All
curves shown were obtained using the data listed in
Table 1.

Figure 3 shows R2(t), R3(t) and the log[Q(t)] plotted
as a function of time for a test conducted at 35�C. As
expected, both R2(t) and R3(t) are bell-shaped func-
tions. In particular, R2(t) remains equal to zero until
the cells have become adapted to the new extracellular
environment, whereupon it starts to increase. After-
wards, due to the reduction of limiting nutrient con-
centration, and probably to the increase of inhibitory
substances, R2(t) decreases until it falls to zero. R3(t)
follows a trend similar to that of R2(t), but is delayed
with respect to the latter. In fact, the rate at which
living cells die is initially low because of both high
limiting nutrient concentration, and the low concen-
tration of toxic catabolites. As the proliferating cells
grow and the limiting nutrient concentration decreases,
R3(t) increases, passes through a maximum and then
decreases until it falls to zero. The decrease of R3(t) is
caused by the reduction in P(t).

Figure 4 shows log[P(t)], log[G(t)] and log[(M(t)]
plotted as a function of time for a test conducted at
35�C. The values of P(t), G(t) and M(t) were evaluated
according to the following expressions:

P t�ð Þ ¼
Z t�

0

R1 tð Þ þ R2 tð Þ � R3 tð Þ½ � � dt ð9Þ

G t�ð Þ ¼
Z t�

0

R2 tð Þ½ � � dt ð10Þ

M t�ð Þ ¼
Z t�

0

R3 tð Þ½ � � dt ð11Þ

The data shown in Fig. 4 are in agreement with the
data shown in Fig. 3: after the cells become adapted to
the new environment, they start to grow and then die.
Right after the lag phase, the value of P(t) is slightly
higher than G(t) due to the conversion of non-prolifer-
ating cells into proliferating cells, while G(t) is higher
than M(t) due to the high concentration of limiting
nutrients. As time passes, the limiting nutrient concen-
tration decreases, leading to an increase in the number of
dead cells, which in turn causes the decrease in P(t). As
the time further increases, G(t) and M(t) level off to
constant values, while P(t) falls to zero.

Figure 5 shows R2(t) and
dN tð Þ
dt plotted as a function of

time for a test conducted at 35�C. The same figure also
indicates the maximum values that the above functions

reach during the cell growth-cycle. The maximum of dN tð Þ
dt

can be experimentally determined and it is generally
referred to as the maximum growth rate. However, as is
evident from the data in Fig. 5, the maximum of R2(t),

which is the ‘‘real’’ maximum growth rate, is higher than
dN tð Þ
dt

�

�

�

max

; and delayed in time with respect to dN tð Þ
dt

�

�

�

max

.

The results obtained in the specific case under investi-
gation suggest two considerations: (1) the number of
cells that die during the exponential growth phase can-
not be neglected, as has been generally accepted; (2) the

Fig. 3 R2(t), R3(t) and log[Q(t)] plotted as a function of time for a
test conducted at 35�C. Solid line R2(t), dashed line R3(t), dash-dot
line log[Q(t)]

Fig. 4 log[P(t)], log[G(t)] and log[M(t)] plotted as a function of
time for a test conducted at 35�C. Solid line log[P(t)], dashed line
log[G(t)], dotted line log[M(t)]

Fig. 5 R2(t) and dN tð Þ
dt plotted as a function of time for a test

conducted at 35�C. Solid line R2(t), dash-dot line
dN tð Þ
dt
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value of dN tð Þ
dt

�

�

�

max

also depends on the number of cells
that die during the exponential growth phase.

Figure 6 shows log Q tð Þ½ �
log Q0ð Þ plotted as a function of time

for the two investigated temperatures. The curves ob-
tained for the two temperatures have similar trends:
microorganisms are in a non-proliferating state for a
given period of time, then suddenly become adapted to
the new environment. Microorganisms at 35�C adapt
faster than microorganisms at 42�C to the new medium.
To further highlight the difference between cell growth
at 35�C and 42�C, Fig. 7 shows R2(t) and R3(t) plotted
as a function of time at these two temperatures. As
evident from the data shown in Fig. 7, microorganisms
at 42�C have a lower growth rate than cells grown at
35�C. Moreover, R2(t) is more dependent on the limiting
nutrient concentration at 42�C than at 35�C, indicating
that cell growth at 42�C is much more critical than at
35�C; i.e., it can take place only in a restricted interval of
limiting nutrient concentration. However, the death rate
at 42�C is lower than that at 35�C, demonstrating that
42�C is a favorable temperature for the lactic acid bac-
teria strain tested.

Figure 8 shows F(t) plotted as a function of time for
the two investigated temperatures. The curves obtained
for the two temperatures have similar trends. F(t)

remains constant for a given period of time then de-
creases and finally levels off to a constant value. Since
the time required to adapt to the new environment at
35�C is shorter than that required at 42�C, the limiting
nutrient concentration for the test conducted at 35�C
starts to decrease at an earlier time compared to the test
conducted at 42�C. However, the rate at which the
nutrient is consumed by living cells is higher at 42�C
than at 35�C, suggesting that, at the higher temperature,
after adapting, the microorganisms consume the nutri-
ent at a faster rate.

Conclusions

In this paper a stochastic-deterministic model is presented
to predict the growth curve of lactic acidmicroorganisms.
To validate the model, an L. bulgaricus strain was tested
in a medium at pH 4.6 at two different temperatures
(42�C and 35�C). The curves representing the lactic acid
bacteria growth curve were satisfactorily fitted by means
of the proposed model. Using the values of the model’s
parameters obtained by fitting the data, it was possible to
quantitatively predict all the phenomena involved during
the cell growth cycle. In the specific case under investi-
gation, it was evidenced that: (1) neglecting cell death
during the exponential phase of growth can lead to an
erroneous evaluation of themaximumgrowth rate; (2) the
adaptation time in the conditions under investigation is
shorter at 35�C than at 42�C; (3) when cells are fully
adapted they consume nutrients at a faster rate.

The results obtained highlight that the mathematical
complexity characterizing the proposed model is coun-
terbalanced by the large amount of information that can
be obtained.

List of symbols

dN tð Þ
dt

�

�

�

max

the maximum of dN tð Þ
dt

E% the relative percent difference between experi-
mental and predicted values

F(t) the limiting nutrient concentration in the extra-
cellular environment (expressed as g/l) at time t

Fig. 6
log Q tð Þð Þ
log Q0ð Þ plotted as a function of time for the two investigated

temperatures. Solid line 35�C, dashed line 42�C

Fig. 7 R2(t) and R3(t) plotted as a function of time for the two
investigated temperatures. Solid line R2(t) 35�C, dashed line R2(t)
42�C, dotted line R3(t) 35�C, dash-dot line R3(t) 42�C

Fig. 8 F(t) plotted as a function of time for the two investigated
temperatures. Solid line 35�C; dashed line 42�C
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F0 the initial concentration of limiting nutrient in
the extracellular environment (expressed as g/l)

G(t) the concentration of generated cells (expressed
as cfu ml)1) at time t

ki constant(s), to be regarded as fitting parameters
m mean value of the probability density function
M(t) the concentration of death cells (expressed as

cfu ml)1) at time t
nexp the number of experimental data points
N(t) the microorganism concentration (expressed as

cfu ml)1) at time t
N0 the initial concentration of microorganisms

(expressed as cfu ml)1)
P(t) the concentration of proliferating microorgan-

isms (expressed as cfu ml)1) at time t
Q(t) the concentration of non-proliferating cells

(expressed as cfu ml)1) at time t
Q0 initial concentration of non-proliferating cells
R1(t) probability density function of conversion of

non-proliferating cells to proliferating cells
(expressed as cfu ml)1 h)1)

R2(t) the proliferation rate (expressed as cfu
ml)1 h)1) at time t

Rmax
2 the maximum of R2(t) (expressed as cfu

ml)1 h)1)
R3(t) the death rate (expressed as cfu ml)1 h)1) at

time t
Yi

exp the experimental value
Yi

pred the predicted value
r standard deviation of the probability density

function
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